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i.l Background

Section i

iNTRODUCTION

I£ QUALtW

Protein crystals for X-ray diffraction study are usually grown resting on

the bottom of a hanging drop of a saturated protein solution, with slow

evaporation to the air in a small enclosed cell. The evaporation rate is

controlled by hanging the drop above a reservoir of water, with its saturation

vapor pressure decreased by a low concentration of a passive solute. The drop

has a lower solute concentration, and its volume shrinks by evaporation until

the molecular concentrations match.

Protein crystals can also be grown from a seed crystal suspended or sup-

ported in the interior of a supersaturated solution. The main analysis of this

report concerns this case because it is less complicated than hanging drop

growth.

Convection effects have been suggested as the reason for the apparent

cessation of growth at a certain rather small crystal size. it seems that as

the crystal grows, the number of dislocations increases to a point where fur-

ther growth is hindered. Growth in the microgravity environment of an orbiting

space vehicle has been proposed as a method for obtaining larger crysta|s.

Experimental observations of convection effects during the growth of

protein crystals have been reported by Pusey et al. (1986), Carter (1987), and

others. Figure I was provided by Pusey.

Figure 1. Observations of

Convection from a Growing

Crystal.
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1.2 Hydrodynamics of Protein Crystal Growth

As a protein crystal grows, the protein concentration in the surrounding

supersaturated solution is decreased. This normally also decreases the den-

sity, and the fluid rises past the growing crystal and ascends in a buoyant

plume.

This convection flow can be expected to produce the following three

effects:

It replaces the surrounding fluid with fresh solution from further

away.

Growth is asymmetric, since the concentration depletion is least

below the crystal, and greatest above it, where the plume leaves.

The shear flow distribution at the crystal boundary modifies the

process of crystal growth.

This third effect is of great concern. In quasi-equilibrium, molecules

are continually being added to and removed from the crystal, and in the thermal

agitation, they can settle in a location of minimum energy, forming a quality

crystal. But if the growth occurs in a shear environment, the relative

positioning of the added molecules is modified, implying much more dislocations

in the added layers of crystal. It has been suggested by many workers that the

accumulation of these dislocations may impede further crystal growth.

If there is ambient density stratification, due to temperature gradients

or to concentration gradients produced by the crystal growth or maintained

externally, the convection flow is modified. In the simplest cases, the am-

bient supersaturated fluid at a distance from the crystal can be regarded as

homogeneous.

There are other hydrodynamic phenomena and issues in hanging-drop protein

crystal growth.

One issue is the shape of the hanging drop, and the limits on its

size. With appropriate support, much larger drops can be used in a

microgravity environment. The water reservoir must also be sup-

ported, of course, for example it can be held by surface tension in a

porous material.

A second hydrodynamic issue is the transport of evaporated moisture

away from the drop, by a combination of diffusion and free or forced

convection.

The processes of evaporation and condensation lead to density varia-
tions in the drop and reservoir. The variation of the solute con-

centration in the reservoir, and of the solute and protein concentra-

tion in the drop, is controlled by diffusion and convection

processes.

A fourth issue is capillary
tension variations caused by
concentration.

convection in the drop, with surface

variations in the temperature and

These phenomena are discussed further in the appendix. Their detailed

study is beyond the scope of this present analysis. Attention is confined in
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the rest of this report to the growth of a supported crystal in an large fluid
volume.

1.3 Model Assumptions

We have performed numerical computations of the total flow and concentra-

tion distributions, including the boundary layer thicknesses and boundary shear

flow, in the convection near a growing spherical crystal. We made the follow-

ing assumptions:

the growing crystal remains spherical;

its growth rate is negligible compared with the convection flow

speeds in the surrounding solution;

the surrounding fluid volume is effectively infinite, and the fluid

at large distances is homogeneous (except in the ascending buoyant

plume);

temperature variations are negligible;

effects of the 'sting' support for the crystal are neglected.

The limitations of these assumptions are discussed in the following paragraphs.

The protein crystal will not be spherical. New molecules prefer to add

themselves to an existing layer, rather then to start a new layer. The crystal

shapes formed are therefore particular to the individual molecule. In addi-

tion, the convection flow may establish preferred directions of growth, because

of variations in flux around the surface and because of velocity shear on the

sides. This assumption of a spherical shape will of course be better for some

proteins than for others.

The growth rate of the crystal, relative to the flow speeds, depends on a

number of parameters, including the degree of supersaturation of the fluid, the

protein concentration in the crystal (rarely I00%), and the Rayleigh number

(discussed below). This assumption is generally a good one.

The surrounding fluid is effectively infinite if its dimensions are at

least thirty to a hundred times the crystal radius. The requirements obviously

depend on the accuracy required. The boundaries modify the flow, and the

concentration depletion in the plume collects at the top of the chamber and

spreads downward.

Temperature effects are negligible because little heat is generated in

protein crystallization and because the diffusivity for heat is so much more

than for protein concentration. External temperature effects, and resulting

convection, may be important in some configurations.

The support for the crystal will cause minimal flow modification if it is

a thin 'sting' with the crystal on the end, and if it extends up vertically

from the bottom of the chamber. A side sting support will cause a [arger flow

modification.

-3-



1.4 Concentration Boundary Condition

We consider two limiting cases for the concentration boundary condition on

the crystal surface. In the first limit, the concentration deficiency

(compared with the supersaturated protein solution at infinity) at the crystal

surface is fixed, while the growth rate varies with position depending on the

calculated f|ux of protein toward the surface. In the second limit, the growth

rate and flux are fixed, while the concentration deficiency varies over the

crystal surface. Numerical results are presented for both cases.

The truth is between these two limits, as illustrated below. The figure

shows the protein flux (linearly equivalent to the growth rate or to the normal

derivative of the concentration) as a linear function of the excess concentra-

tion at the interface over saturation. Note that equilibrium at the interface

is only a good approximation if growth is extremely slow, because of the large

size of the protein molecules of interest.

Growth Rate

tion

Concentration

at Interface

Figure 2. Illustrative Plot of Growth Rate versus Interface Concentration

In the first limit, the supersaturation at the interface is smal[ compared

with that at large distances, so that the interface deficiency is effectively

constant. In the second limit, the supersaturation at the interface is only

very slightly less than the supersaturation at infinity, so that the flux is

effectively constant. Plainly, the truth will always be somewhere between

these two extremes.

We have not included any reduction in the growth rate due to interface

velocity shear, in our model computations. We have merely computed the shear

as a function of the radius and the other parameters. It is our hypothesis

that as the radius increases, the corresponding increase in shear velocity

modifies the growth process, leading to an increasing number of dislocations.

Further growth is stopped, since the supersaturation of the fluid cannot be

increased further without spontaneous nucleation.
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1.5 Problem Parameters

The key constant parameters defining the problem are as follows:

crystal radius a;

gravity g;

mean density p;

kinematic viscosity U; and

diffusivity for the protein, D; and either

surface relative density deficiency C for protein concentration; or

surface relative density gradient C' for the second limit.

Values of interest are as follows:

a < 0. i cm,

g = 980 cm/sec 2 (or about 0.01 om/seo 2 for microgravity),

= I gmlco,

9

= 0.01 cm'Isec,

o

D = 10-7 to 10-5 cm_/sec, and either

C < 0,0001 (no units), for the first limit, or

-i
C' < 0.001 cm , for the second limit.

1.6 Dimensionless Parameters

From these input parameters, we can derive two independent dimensionless

parameters characterizing the flow. The Schmidt number is

S = p/D : 10 3 to 10 5.

The Rayleigh number is

for the first limit, and

4

R = _C'a
d}

for the second. The Grasshof number R/S is also in common use. Using the

parameter ranges above, its maximum possible value is unity, corresponding to R

values up to about I0-.
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1.7 Dimensionless Equations

Using the length scale a and the diffusivity scale D yields the dimension-

Less equations

-I Du 2 ^

S Dt - -V_ + V _ + Rcz ,

Dc o

Dt

The flow ,_ is zero on the spherical boundary r = I. The variables tend to zero

at infinity. The dimensionless concentration c is unity on r = I, in the first

limit where the value is imposed on the growing crystal surface. In the other

limit of imposing a fixed flux, the boundary condition is

%c/ _r = -i .

To obtain the dimensional variables from the corresponding dimensionless

variables, they must be multiplied by the following scales:

length a (cm);

speed D/a (cm/sec);

time a2/D (sec);

pressure pD/a 2 (dynes/cm_); and

relative density deficiency C or C'a (no units).

1.8 Theoretical Estimates

This system of equations is not amenable to analytic solution, and must be

solved numericalLy. The scales of the solution can be estimated, and this is

an important preliminary to numerical solution.

In the first place, the momentum term in the equation of motion is always

small in comparison with the viscous term, since S is so large.

For R small compared with i, the concentration solution near the sphere is

approximated by the conduction (no flow) solution c = I/r. This applies in

both limiting cases, with the boundary condition c = i or with the boundary

condition that the radial derivative is -I. The equation of motion determines

the dimensionless flow speed magnitude as a function of radius, as of order

R(r-i).

The corresponding shear on the crystal boundary is of order R. The upper limit

on the radius, for the conduction solutior and the corresponding flow solution

to apply, is

-I/2
r < R

The theoretical estimates for the dimensionless flow and boundary layer

thickness, for ]arge R, are more difficult. Assume boundary layer thickness T

and velocity shear Q. Then the velocity in the layer is aT. From the concentra-

tion equation balance,

-6-



_T = I/T 2.

Also the ratio of the concentration deficiency (comparedwith infinity) to its
normal derivative at the interface is T (whichever of these two quantities is

imposed by the boundary condition). Assuming that the buoyancy in the layer is

significant in driving the shear (rather than the shear being mostly due to

plume buoyancy), the motion balance gives in the two limits,

_T/T 2 = R, and

QT/T 2 = RT.

Thus, when the concentration deficiency as compared with infinity is imposed,

the shear and thickness are of order

(_ = R3/4,

-1/4
T =R

while when the concentration

thickness are of order

Q = R 3/5,

-1/5
T = R

deficiency gradient is imposed, the shear and

The numerical results confirm these estimates.

The plume thickness, as the buoyant plume leaves the crystal, is of the

same order. The angular thickness decreases without limit as the plume rises

and its speed increases, so that full resolution of the whole plume using a

spherical polar mesh is impossible. Fortunately, accurate resolution of the

far plume and of the far-field flow which it drives is not a requirement, in

the study of convection effects on protein crystal growth.

The dimensional shear is QD/a 2. Substituting our three formulae for Q,

Q = R, for R << I,

Q = R 3/4, for R >> I, fixed deficiency,

Q = R3/5, for R >> I, fixed growth rate,

and using our two definitions of R and its dependence on a, gives

b
Dimensional shear ~ a ,

where

b = 1, for R << I, fixed deficiency,

b : 2, for R << I, fixed growth rate,

b = 114, for R >> I, fixed deficiency,

b = 2/5, for R >> 1, fixed growth rate.
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More precisely, we can derive the following table for the dimensional
shear in the limits of small and large R, for fixed deficiency and for fixed

growth rate.

R << I

R >> I

Fixed Deficiency Fixed Growth Rate

9

3/4 1/4 3/5 2/5
(gC/Rv) (Da) (gC'/Dv) (Da)

Table i, Estimates for Dimensional Shear Maximum in Four Limiting Cases

-8-



Section 2

NUMERICAL METHODS

2.1 Convection Modellin_ with the AGCE Code

We have modeled convection effects in protein crystal growth by using an

existing computer code. This flexible code was developed by the present

author, under MSFC sponsorship, to model thermal convection in a spherical

layer. The design objective for the code was studies related to NASA's

proposed Atmospheric General Circulation Experiment (AGCE). The code was built

with great flexibility, and with minor modifications and appropriately chosen

input data it was well suited to NASA's requirements in this study.

The code uses the primitive variables in spherical polar coordinates. The

vorticity-stream function formu]ation was avoided, to facilitate the use of the

code for stability analyses and in three dimensions. The domain is rectangular

in these coordinates, which allows for the whole region between an inner and

outer sphere. A wide range of options is available for the thermal boundary

conditions on each boundary segment. With the substitution of concentration

for temperature, the code was ready for use with almost no other changes. We

imposed zero dimensionless density deficiency (scaled concentration deficiency)

on a large outer radius (which is a good approximation as discussed in Section

I._). On the inner sphere of radius unity, we imposed one of the two limiting

dimensionless concentration boundary conditions.

Th code allows the use of flexibly-defined non-uniform meshes. These

allowed us to resolve the thin boundary layers on the sphere (for large R),

without wasting mesh points on the regions far from the sphere. Similarly, we

could resolve the thermal plume (at [east near the crystal) without using a

fine @ mesh outside the plume.

The numerical method options available in the AGCE code include iteration

to a steady state using an algorithm which approximates time-stepping the

unsteady equations, but with a time step which varies with position. This was

a crucial factor in obtaining steady-state solutions in reasonable time, and at

reasonable cost in computer resources, since the time scales vary enormously in

this application over the relevant domain, implicit algorithms are used for

the advection and diffusion of heat and momentum, and for the representation of

internal gravity waves.

2.2 Input Data

Sample data for the AGCE computer code for this application is shown

below. The input parameters are divided into three groups, concerned with the

problem, the numerical method, and the output. The problem is for the imposed

concentration deficiency case, with S = I000 and R = I0,000, as indicated in

the top line.

The data reflects the non-dimensional problem, even though the code ac-

cepts dimensional data.

-9-



CRYSTAL/S=IOOO/R=lO000 tmIPROBLEMPARAMETERS'°*

DOMAIN BOUNDARYLAYER
BOUNDARIES THICKNESSFOR MESH
THL : .0000000 DTHL = .0400000
THR = 3.1415926 DTHR = I._0000
RB = 1.0000000 DRB = .0800000
HT = 30.0000000 DBT = 30.1000000
PORE= .0000000 PORTH= .0000000

DIFFUSIVITIES
ROTATIONRATES
ANU : lOOO.O000000
AKAPPA= 1.0_000
OMEGAC= .0000000
OMEGAM= .0000000
OMEGAI= .0000000

ZONALWAVE NUMBERRANGE : S, S,

BOUNDARYTEMPERATURESlOE & CORNER
I - VALUEFIXED TEMPERATURES
2 - ZEROFLUX 4 - FIXED,<ALTH,ALR
3 - AXIS 5 - FIXED,>ALTH,ALR
L?BOT = I ABOT = .00 TTL = .00
LTTOP = i ATOP : .00 ?TR : .00
LTLEPT= 3 ALEFT= .00 TBL : 1.00
LTHITE = 3 ARITE = .00 TBR= 1.00

1

BOUNDARYTEMPERATUREINTERPOLATION
LINEARIN TH"IT OR RI,IT
IT : -9 & 99 FOR INFINITY
ALTH= .5000000 ALE : 6.0000000
ITBOT = I -3:COS(TH/ALTH)
ITTOP = [ -4:LOG(TANA(TH/2)+T4(A/2))
ITLEFT : 1
ITRITE = I

BUOYANCYFORCE
SURFTC: .00_000
GTERR : 1000.0000000
GDIEL = .0000000
PDIEL = .0000000
ALPHA= 10000.0000000
ALPHA2= .0000000

INTERIORHEATING
POWERSOF TH & R
AIHEAT: .0000000
PIHTTH= .0000000
PIHTR = .0000000
CIHTTH= .0000000
CIHTH = .0000000

BOUNDARYVELOCITY
1 - NO - SLIP 4 - STRESS/SLIP= ON
2 - FREE- SLIP
3 - AXIS
LUBOT = I OMBOT = .0000000
LUTOP = t OHTOP = .0000000
LULEFT= 3 OMLEFT= .0000000
LURITE : 3 OMR[TE: .0000000

'"METHOD PARAMETERS"'

NUMBEROF STEPS TEMPERATURETIHE STEP
NSTEP = 6127 TAUT= 0.010
INITIALTEMPERATURE PTFH = 1.000
TINIT = .00 PTR = 1.000

VELOCITYTIME STEP UPWINDDIFFERENCES
TAUU = .00003 TUPWND = .I00
PUTH : 1.000 UUPWND= .100
PUB = 1.000 SMTHU = .000

REQUIREDCONVERGE_E
RCONV = 9.000
_EVM : 1.000
SMTHW = .000

IMPLICITAMPLITUDESAND CONTROLS
BETTA : .60 FIX?TH: T
BETUA = .60 FIXUTH= T
B_UC = 1.00 FIXUC = T

IMPLICITAMPLITUDESAND CONTROLS PRESSUREMETHOD
BETTD = .60 FIXTR = T NPJTER= 7
BE?UD = .60 FIXUR = T PEXTRP : 1.00
BETINT= 1.00 FIXINT: T ADINT = 0.20

I,,OUTPUTPARAMETERS,,,

CONCENTRATION C
DIRECTACCESSREAD & WRITESEGMENTS
ISEGR= I ISEGW= 1 ISEGS= 1 IBEGDA= 0
(0: ANALYTIC.-1: AFTERPRIORCASE) (ZEROMEANSNSTEP)

ISTEP BEGIN& INCREMENTFORPRINTERDIAGNOSTICS
VARIABLE PHYSICALCONTOURINTEGERCONTOURPRINTNUMBERS iB IE II KB KE kl PHYSICAL

9904 9905 9906 1 22 1 22 1 -1 I 9914
9904 9905 9906 i 22 t 22 1 -1 9913 9914
9904 9905 9906 1 22 1 22 1 -1 9913 9914
9904 9905 9906 I 22 1 22 ! -t t 9914
9904 9905 9906 I 22 1 22 1 -1 9913 9914
9904 9905 9906 t 22 1 22 1 -t 9913 9914
9904 9905 9905 1 22 1 22 1 -1 9913 9914
9904 9905 9906 t 22 1 22 1 -1 9913 9914
9904 9905 9906 I 22 ! 22 1 -1 9913 9914
9904 9905 9906 t 22 t 22 1 -1 9913 9914
9904 9905 9906 I 2l 1 21 t -1 t 9914
9904 9905 9906 I 21 t 21 1 -1 9913 9914
9904 9905 9906 1 22 1 22 1 -1 9913 9914
9904 9905 9906 I 22 1 22 1 -1 9913 9914
9904 9905 9906 1 22 1 22 I -1 9913 9914

U 9901 9902 9903
V 9901 9902 9903
W 9901 9902 9903
T 6127 9902 6127
P 9901 9902 9903
DP 9901 9902 9903
DU 8901 9902 6127
DV 9901 9902 9903
DW 8901 9902 6127
OT 8901 9902 6127
PSI 6127 9902 9903
VORT 9901 9902 9903
AAM 9901 9902 9903
OMEG 9901 9902 9903
,," 9901 9902 9903

WRITESTEP BEGINNING& INCREMENT DIAGNOSTICFREQUENCY CONTOURLINES
IINCDA= 900 NDIAG = 0 NCLP = 0 NCL] = 0

RTOP : 4.00 NCOPYS = 1
RANGESFOR [ ANDK PLOTTERIDAOUTBEGIN& INCREMENT

INTEGER INCH
9915 9001 .0
9915 9916 .0
9915 9916 .0
9915 9001 .0
9915 9916 .0
9915 9916 .0
9915 9916 .0
9915 9916 .0
9915 9915 .0
9915 9916 .0
9915 9916 .0
9915 9916 .0
9915 9916 .0
9915 9916 .0
9915 9916 .0

Figure 3. Input Data for the AGCE Code, for a typical case.
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The left and right % boundaries THL and THR are of course zero and _,

corresponding to the upward and downward axes. The inner radius RB is unity.
The outer radius RB of the computational domain is an approximation to an

infinite domain; the results should be unaffected by any larger choice. This

was confirmed using an outer radius of 50.

The viscosity ANU and the thermal diffusivity AKAPPA are S (i000 in this

case) and unity. The constants ALPHA and GTERR multiply the temperature to

give the upward buoyancy acceleration; we therefore always set GTERR to S and

ALPHA to R. Thus the equation of motion is precisely that in Section 1.7,

multiplied through by S.

The code uses nonuniform computational meshes in the radial and theta

directions. The radial mesh spacing is proportional to the product

(RT + DRT - r)(r RB + DRB).

A similar expression defines the theta mesh, using DTHL and DTHR. The quan-

tities DRB and DTHL are small, to give adequate resolution of the boundary

layer on the sphere and of the rising plume.

The LTxxx variables establish that the "temperature" c is imposed on the

"bottom" RB and on the "top" RT, while axis boundary conditions are applied on

the axis ("left" and "right"). The corner temperatures (TTL means "temperature

top left") determine the imposed temperatures on the top and bottom boundaries

as zero and unity, independent of the interpolation method. The velocity

boundary conditions are no-slip (zero) at the top and bottom, and normal axis

conditions at the axis boundaries.

The OMxxx quantities are rotation rates, and are of course not applicable

here. The same applies to other zero problem parameters.

The first group of method parameters define and control the iteration

method, with the number NSTEP of iterations, the nominal time steps TAUT and

TAUU which are used for temperature and velocity at the coarsest part of the

mesh, and the powers of the mesh spacings in the two directions (PTTH, PTR,

PUTH, and PUR), used to decrease these nominal time steps. The time steps are

very small in the plume and in the boundary layer on the inner sphere. The

upwind differencing parameters introduce a very small amount of upwind dif-

ferencing in the representations of the temperature and velocity equations,

only for cases and at mesh points where it is needed, to avoid mesh separation.

Otherwise accurate central differences are used in the representation of all

terms.

The second group of method parameters define and control the implicit

computation. Implicit methods are required because of the thin layers, high

speeds, and convergence requirements. The logical FIXxx variables are T

(true), indicating that implicit methods are used in both coordinate directions

for both temperature and velocity, and also for internal waves. The BETxx

variables determine the precise form of the implicit methods used, and values

between a half and unity are appropriate.

The first group of output parameter_ describe the restart options. When

[SEGR is zero, the computation is begun from analytic initial conditions

defined by the problem parameters. Complete data for a restart are written to

a direct access file every IINCDA steps, beginning with segment ]SEGW at step

IBEGDA (for which zero indicates NSTEP a_ in this data). With ISEGR equal to
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1, as in this case, the initial conditions are read in from the previously-

written segment I of the direct access file.

The remaining output parameters control the printed and plotted output.

The variable RTOP is the outer radius for plots, and is of course much less

than the variable RT. Printer graphics and numerical output are produced from
the run itself, for the indicate variables, beginning at the indicated steps

(iterations) and at the indicated frequency. For this data, the temperature T

and the stream function PSI are plotted on the printer at iteration 6127, which

is the last iteration. The temperature and the changes in the velocity com-

ponents and temperature are also plotted against the integers, as a measure of

resolution and convergence.

The quality plots are produced in a separate computation which uses the

direct access file for input, and reads this same input data. With this data,

U, T and PSI are plotted, from the data on segment I of the direct access file.
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Section 3
FIXED CONCENTRATION DEFICIENCY

3.1 Summary of Cases Computed

Table 2 is a summary of the fixed-deficiency cases which we have computed.

For S equal to I000, we did R values increasing by factors of ten from one to a

million. In addition, we did R values of I, 1,000, and 100,000, with S equa[

to 100,000. In each case, the table shows two sets of results, obtained using

a 40x40 mesh and using an 80x80 mesh (labeled LOW and HIGH RESOLUTION respec-

tively, to indicate the resolution). For each case and resolution, three

numerical values are shown:

the maximum shear Q = _J@/ar, on the interface; and

the maximum and minimum normal derivative of the concentration _/ _.

In each case, the negative sign is dropped.

LOW RESOLUTION HIGH RESOLUTION

_/Br SHEAR _I _ _lqr
S R SHEAR _cl _max min max min

1,000 I 3.07 1.491 0.959 3.41 1.542 0.974
10 14,46 1.997 0.923 19.86 2.155 0,922

100 66.88 2.827 0.860 70.07 2.874 0.870

1,000 320.20 4.413 0,790 336.45 4.417 0.810

10,000 1539.10 7.565 0.703 1642.20 7.244 0.766

100,000 7348.10 13.628 0.579 8083.30 12.726 0.714

1,000,000 33187.00 20.191 0.216 39799,00 23.922 0.622

100,000 1 3.07 1.491 0.959 3.13 1.501 0.964

1,000 322.44 4.416 0,791 332.41 4.360 0.811

100,000 7809.10 13,634 0,581 8695.70 13.868 0.764

Table 2. Summary of Numerical Results for the Fixed-Deficiency Cases

The following points should be noted about these results.

First, the error of the high-resolution case is less than a quarter of the

error of the low resolution case, because the method parameters and the domain

choice RB were improved in each case for the high-resolution run, based on the

low-resolution results. Comparing the numbers, it can be seen that all the

high resolution results have satisfactory accuracy.

Secondly, the differences between the results for the two different values

of S are very small. For this reason, we did not do an exhaustive analysis of

the effect of S. This result is consistent with the analysis in Section 1.8;

since S enters the equations only in the momentum term, which is multiplied by

the reciprocal of S.

Thirdly, the minimum of the concentration derivative occurs at the end of

the plume, and is of relatively little significance. The maximum of the normal
derivative of the concentration is a measure of the reciprocal of the boundary

layer thickness, since the interface concentration is unity.
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Fourthly, the boundary layer thickness becomesvery small as R increase,
as predicted theoretically in Section 1.8. For this reason, the input data
used decreasing va[ues of the parameters DRBand DTHL(cf. Section 2.2) as R

increased, in order to resolve the boundar} layer and plume.

Figure 4 is a logarithmic plot of the maximum shear on the interface, as a

function of the Ray[sigh number R. The slope at large R is close to the

predicted value of 3/4. We did not go to small enough R to obtain the

predicted slope in that region of unity.
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Figure 4. Logarithmic Plot of the Shear Maximum as a

Function of the Rayleigh Number, for the Fixed Deficiency Case.

Figure 5 is a logarithmic plot of the boundary layer thickness as a func-

tion of R. Again, the slope is close to the predicted value of I/4, for large

R. For small R, the analytic solution T = i/r is approached, with constant

thickness unity.
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Figure 5. Logarithmic Plot of the Thickness Minimum as a Function of

the Rayleigh Number, for the Fixed Deficiency Case.

3.2 Plots of Typical Results

Figures 6 through 9 are plots of the concentration distribution solutions
c for R values of 1, 100, 10,000 and 1,000,000. The decrease in the thickness

of the boundary layer and plume is immediately apparent. For small R, the

distortion from the exact no-flow solution c = 1/r is slight. For large R, the

flow is so rapid that the concentration deficiency can only diffuse a very

small distance into the fluid.

Figures 10 through 13 show the corresponding flow solutions. The stream
function is the volume flux per azimuthal radian, flowing between the indicated

point and the axis. The flow follows the stream lines. The rapid increase in
the values and in the contour increments should be noted.

Figures 14 through 17 show the theta component of the velocity, for the

same cases. The contrast is significant. Resolution problems are apparent at

the largest Rayleigh number.
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CONCENTRATION

VALUE/S0/5-1,000/R'1

MAXIMUM " 1.0001
MINIMUM • 2.73S38E-02

INCREMENT • S.00000E-02

Figure 6. Concentration for Fixed Deficiency Case
with S = 1,000 and R = 1
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CONCENTRATION

VALUE/80/S.1,000/R.100
MRXIMUM - 1.0002
MINIMUM - 3.42961E-04

INCREMENT - S.00000E-02

Figure 7. Concentration for Fixed Deficiency Case
with S = 1,000 and R = I00
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CONCENTRATION
UALUE/SO/S-1,OOO/Ro10,000
MAXIMUM - 1.0005
MINIMUM - 1.51806E-04
INCREMENT - 5.00000E-02

Figure 8. Concentration for Fixed Deficiency Case

with S = 1,000 and R = I0,000

-18-



COMCENTRATION
UALUE/S0/S=1oOOO/R-1,000,000
MAXIMUM - 1.0008
MINIMUM - 7.BSO59E-04
INCREMENT " 5.00000E-02

Figure 9. Concentration for Fixed Deficiency Case

with S = 1,000 and R = 1,000,000
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STREAM FUNCTION
VALUE/BO/S-1,000/R'I
MAXIMUM - 1.25743E-07

MIMIMUM - -8.2172

INCREMENT " 0.40000

Figure 10. Stream Function for Fixed Deficiency Case
with S = 1,000 and R = I
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STREAM FUNCTION
VALUE/S0/S-1,000/R-100
MAXIMUM - 6.18981E-0?
MINIMUM - -72.0SS

INCREMENT - 4.0000

Figure 11. Stream Function for Fixed Deficiency Case
with S = 1,000 and R = 100
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STREAM FUNCTION
VALUE/80/S-I,OOO/R'10,000

MAXIMUM . @.202GgE-08

MINIMUM - -$83.44

INCREMENT " 30.000

Figure 12. Stream Function for Fixed Deficiency Case

with S = 1,000 and R = I0,000
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STREAM FUNCTION
UALUE/80/S-1,000/R-1o000,000
MAXIMUM - 2.5662
MINIMUM - -1253.7

INCREMENT - 60.000

Figure 13. Stream Function for Fixed Deficiency Case

with S = 1,000 and R = 1,000,000
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SOUTHWARD UELOCITY
UALUE/80/S-l,000/R'1
MAXIMUM . 3.86081E-03
MIMIMUM - -I.2430

IHCREMEHT " S.00000E-02

Figure 14. Theta Velocity Component for Fixed Deficiency Case
with S = 1,000 and R = i
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SOUTHUARD VELOCITY
UALUE/80/S-1,000/R=100
MAXIMUM • 2.78777E-02
MIHIMUM • -14,$48

IHCREMEHT " 0.60000

Figure 15. Theta Velocity Component for Fixed Deficiency Case
with S = 1,000 and R = ic)O
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SOUTHQARD UELOCITY
UALUE/80/$-1°000/R-10,000
MAXIMUM - 0.24349

MINIMUM - -173.77
INCREMENT - 8.0000

Figure 16. Theta Ve]ocity Component for Fixed Deficiency Case
with S = 1,000 and R = 10,000
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SOUTHQARD VELOCITY

UALUE/SO/S.1,000/R.1,000,000
MAXIMUM - 215.47

MINIMUM • -203g.6
IHCREMEHT - 100.00

Figure 17. Theta Velocity Component for Fixed Deficiency Case

with S = 1,000 and R = 1,000,000
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Section 4

FIXED GROWT_ RATE

4.1 Summary of Cases

Table 3 is a summary of the fixed growth rate cases which we have

computed. For S equal to 1,000, we did R values increasing by factors of ten

from one to a million. In addition, we did R values of I, 1,000, and 100,000,

with S equal to I00,000. In each case, the table shows two sets of results,

obtained using a 40x40 mesh and using an 80x80 mesh (labeled LOW and HIGH

RESOLUTION respectively, to indicate the resolution). For each case and

resolution, three numerical values are shown:

the maximum shear magnitude; and

the maximum and minimum concentration.

S

1,000

LOW RESOLUTION HIGH RESOLUTION

c SHEAR c c .
R SHEAR Cma x min max mln

i 2.59 0.690 0.710 2.85 0.874 0.690

10 10.50 0.772 0.542 13.93 0.743 0.508

100 40.06 0.640 0.409 41.61 0.635 0.403

1,000 152.29 0.500 0.292 158.29 0.496 0.288

i0,000 572.76 0.372 0.199 601.03 0.368 0.197

100,000 2121.70 0.266 0.132 2265.10 0.263 0.132

1,000,000 7658.60 8534.50 0.162 0.086

100,000 1 0.26 0.890 0.710 0.874 0.689

1,000 152.89 0.500 0,291 169.42 0.496 0.288

100,000 2125.10 0.274 0.136 2436.80 0.262 0.132

Table 3. Summary of Numerical Results for the Fixed Growth Rate Cases

The following points should be noted about these results.

First, the error of the high-resolution case is less than a quarter of the

error of the low resolution case, because the method parameters and the domain

choice RB were improved in each case for the high-resolution run, based on the

low-resolution results. Comparing the numbers, it can be seen that all the

high resolution results have satisfactory accuracy.

Secondly, the differences between the results for the two different values

of S are very small. For this reason, we did not do an exhaustive analysis of

the effect of S. This result is consistent with the analysis in Section I;

since S enters the equations only in the momentum term, which is multiplied by

the reciprocal of S,

Thirdly, the maximum of the concentration occurs at the end of the plume,

and is of relatively little significance. The minimum of the concentration is

a measure of the reciprocal of the boundary layer thickness, since the normal

derivative is -I.

Fourthly, the boundary layer thickness becomes very small as R increase,

as predicted theoretically in Section 1.6. For this reason, the input data
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used decreasing values of the parameters DRBand DTHL(cf. Section 2.2) as R
increased, in order to resolve the boundary layer and plume.

Figure 18 is a logarithmic plot of the maximumshear on the interface, as
a function of the Rayleigh numberR. The slope at large R is close to the

predicted value of 315. We did not go to small enough R to obtain the

predicted slope of unity in that region.
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Figure 18. Logarithmic Plot of the Shear Maximum as

a Function of the Rayleigh Number, for the Fixed Growth Rate Case.

Figure 19 is a logarithmic plot of the boundary layer thickness as a

function of R. Again, the slope is close to the predicted value of I15, for

large R. For small R, the analytic solution T = 11r is approached, with con-

stant thickness unity.
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Figure Ig. Logarithmic Plot of the Thickness Minimum as

a Function of the Rayleigh Number, for the Fixed Growth Rate Case.

4.2 Plots of Typical Results

Figures 20 through 23 are plots of the concentration distribution solutions c
for R values of I, 100, 10,000 and 1,000,000. The decrease in the thickness of

the boundary layer and plume is immediately apparent. For small R, the distor-

tion from the exact no-flow solution c = l/r is slight. For large R, the flow

is so rapid that the concentration deficiency can only diffuse a very small

distance into the fluid.

Figures 24 through 27 show the corresponding flow solutions. The stream

function is the volume flux per azimuthal radian, flowing between the indicated

point and the axis. The flow follows the stream lines. The rapid increase in

the values and in the contour increments should be noted.

Figures 28 through 31 show the theta component of the velocity, for the

same cases. The contrast is significant. Resolution problems are apparent at

the largest Rayleigh number.
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COHCEHTRATIOH
FLUX/8e/S=I,0ee/R.1
MAXIMUM • e.87394
MINIMUM - 2.54125E-02

INCREMENT = 4.00000E-02

Figure 20. Concentration for Fixed Growth Rate Case

with S = 1,000 and R = I
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CONCENTRATION
FLUX/Se/S=I,eee/R=lee
MAXIMUM • e.63498
MINIMUM = 2.134egE-e4
INCREMENT • 3.eeeeeE-ee

Figure 21. Concentration for Fixed Growth Rate Case

wiLh S = 1,000 and R = I00
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COMCEHTRATIOH

FLUX/80/S-1,000/R'10,000
MAXIMUM - 0.36767

MIMIMUM • 3.43907E-05

IHCREMEMT " 2.00000E-02

I

Figure 22. Concentration for Fixed Growth Rate Case
with S = 1,000 and R = 10,000
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CONCENTRATION
FLUX/S0/S-1s000/R'1_000,000
MAXIMUM - 0.18177
MINIMUM . S.7426SE-0S

IHCREMEHT " 1.00000E-02

Figure 23. Concentration for Fixed Growth Rate Case
with S = 1,000 and R = 1,000,000
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STREAM FUHCTIOH
FLUX/80/$-l,eee/R'I

MAXIMUM . 1.eT?glE-e7
MIHIMUM . -?.@498

IHCREMEHT " @.4@@@@

i

I

!

Figure 24. Stream Function for Fixed Growth Rate Case
with S = 1,000 and R = [
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STREAM FUNCTION

FLUX/80/S=Io000/R=100
MAXIMUM - 5.13915E-07

MINIMUM - -49.88?
INCREMENT - 3.0000

Figure 25. Stream Function for Fixed Growth Rate Case

with S = 1,000 and R = I00
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STREAM FUNCTION
FLUX/B0/S-1,OO0/R'10,000
MAXIMUM = 0.00000E+00
MINIMUM - -307.$4
INCREMENT " 1_.000

Figure 26. Stream Function for Fixed Growth Rate Case
with S = 1,000 and R = 10,000
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STREAM FUHCTIOH
FLUX/Se/S=l,eee/R=1,Qee°eee
MAXIMUM • 4.51589E-e?
MIMIMUM - -1196.5
IHCREMEHT • 6_._e@

Figure 27. Stream Function for Fixed Growth Rate Case
with S = 1,000 and R = 1,000,000
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SOUTHUARD VELOCITY
FLUX/80/S-1,000/R-1
RAXIRUM - 3.34666E-03
MIHIMUM - -1.0626
IHCREMEHT - 4.00000E-02

Figure 28. Theta Velocity Component for Fixed Growth Rate Case

with S = 1,000 and R = I
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SOUTHUARD VELOCITY
FLUX/B0/So1,000/R-100
MAXIMUM - 1.BBS2SE-02
MINIMUM - -9.4702
INCREMENT - 0.40000

Figure 2g. Theta Velocity Componenf for Fixed Growth Rate Case
with S = 1,000 and R = 100
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SOUTHWARD VELOCITY
FLUX/B0/5-1,000/R-10,000
MAXIMUM - 0.113gB
MIMIMUM - -77.634

INCREMENT - 3.0000

Figure 30. Theta Velocity Component for Fixed Growth Rate Case
with S = 1,000 and R = 10,000
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SOUTHUARD UELOCITY
FLUX/80/S-1,000/R-1,000,000
MAXIMUM " 7.5812

MINIMUM - -sgs.23

INCREMENT " 30.000

Figure 31. Theta Velocity Component for Fixed Growth Rate Case
with S = 1,000 and R = 1,000,000
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Section 5
CONCLUS IORS

We have suggested that the main reason for the difficulty in growing

protein crystals beyond a certain rather limited size in terrestrial gravity is

the accumulation of crystal defects caused by crystal growth in a shear convec-

tion flow. This would apply both to a hanging drop configuration and to growth

of a supported crystal. The configuration of the added molecules is modified

by the shear flow.

We have analyzed the easier case of the growth of a supported protein

crystal from a homogeneous supersaturated protein solution. We assumed that

the crystal remains spherical, with its growth rate negligible compared with

the flow speeds. We assumed that the surrounding supersaturated protein solu-

tion is effectively infinite, and homogeneous at infinity, and we neglected

sting effects.

We derived the non-dimensional equations. We obtained order of magnitude

estimates for the velocity shear on the protein boundary and for the boundary

layer thickness, as functions of the dimensionless Rayleigh number, in the two

relevant limits of fixed density deficiency at the interface, and of fixed

growth rate. We demonstrated that with this non-dimensionalization, the

Schmidt number and the momentum term can b_ dropped from the analysis,

We derived the following table for the dimensional shear in the limits of

small and large R, for fixed deficiency and for fixed growth rate.

Fixed Deficiency

R << i u

R >> 1 {gC/R_)3/4(Da)
114

Fixed Growth Rate

(gC'/D_)5/5(Da) 2/5

As a crystal grows, R increases rapidly. |f the critical value of the shear

(where crystal damage occurs) is reached while R is still small compared with

unity, then the shear is strongly dependent on radius, and therefore the criti-

cal radius is relatively insensitive to the other parameters. On the other

hand, once R is greater than one, small changes in the other parameters may

allow substantial changes in a.

We solved the equation numerically for Rayleigh numbers in the range from

one to a million, and for Schmidt numbers from 1,000 to 100,000. The results

confirmed our analysis. We produced plots of the concentration and flow solu-

tions over the whole range. This work as done using an existing computer code,

developed under NASA sponsorship for a different application.
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APPENDIX

CONVECTION PROCESSES IN HANGING-DROP CRYSTAL GROWTH

A.I Background

In hanging-drop protein crystal growing configurations, there are horizon-

tal density gradients, and resulting flows, in the drop itself, in the air, and

in the reservoir fluid. These motions are coupled, so that density gradients

in any one of the three alone would cause motion in the other two media. On

the other hand, this coupling is weak, and in practice the motions are essen-

tially independent.

Axisymmetry is a good approximation. For definiteness, we can assume a

hemispheriQal drop of radius a(t), and a cylindrical cell with radius _ and air

volume _b_h. The volume flux of water from drop to reservoir is -2_a-al it is

diffused as vapor through the air, and diffuses into the "brine" in the

reservoir. Changes in the water content of the air are negligible, so the

total flux varies only with time.

A.2 Convection in the Reservoi[

The water vapor flux into the brine is proportional to the excess of the

partial pressure of the water vapor over the local saturation vapor pressure of
the brine. Thermal effects of the condensation are negligible, since the

diffusivity of heat is higher and the heat can diffuse away.

With more water vapor arriving near the axis, the brine near the axis is

diluted more than the brine at the circumference of the reservoir. This estab-

lishes a convection flow in the reservoir, which tends to keep the brine con-

centration independent of radius. Only a very slow circulation is required to

do this, particularly as convection in the air tends to keep the water vapor

flux uniform over the brine surface.

A.3 Convection in the Vapor Phase

The vapor pressure in the air is highest near the drop, and lowest near

the brine, so the air is lightest near the drop and heaviest near the brine.

thus the convection pattern is self stabilizing. Most of the convection is in

the layers beside the drop, where the water vapor spreads horizontally by

convection, before diffusing down to the brine.

A.4 Convection in the Drop

The removal of the water flux from the drop increases the concentration at

the drop boundary both of the protein of interest and of any secondary solutes

either present as impurity or deliberately introduced to limit the evaporation.

The protein has a very low diffusivity, so this increase in concentration will

only slowly diffuse through the drop. The concentration variations drive both

buoyancy convection and Marangoni convection in the hanging drop. The solute-

rich layer on the outside of the drop will want to sink to the bottom of the

drop under gravity. On the other hand, the higher concentration will lower the

surface tension, driving a Marangoni circulation in the opposite direction.
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A.5 Summary and Illustration

The foLlowin_ figure shows qualitatively the isopycnals on the left, and

the streamlines of the circulation on the right. The water vapor f[ux from the

drop to the brine causes a low-density layer in the brine, a high-density layer

in the drop and density stratification _nd convection in the air. The drop

convection is modified by surface tension v_riations.

f

I

Figure 32. Convection Processes in a Hanging Drop Configuration
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